
Optimal Nonlinear Neural 
Network Controllers for 

Aircraft
Joint University Program Meeting

October 10, 2001

Nilesh V. Kulkarni

Advisors

Prof. Minh Q. Phan
Dartmouth College, Hanover, NH

Prof. Robert F. Stengel
Princeton University, NJ



Presentation Outline:

! Research goals.
! Definition of the problem.
! Parametric optimization approach.
! Modified Approach.
! Neural Network implementation.
! Linear System Implementation.
! Nonlinear System Implementation.
! Conclusions



Research Goals

" To come up with a control approach that is:
! Optimal or approaching optimality in the limit
! Applicable to both linear and non-linear systems
! Data-based (no need for an explicit analytical model of 

of the system)
! Adaptive to account for slowly time-varying dynamics 

dynamics and operating conditions.
" Application to aircraft.



General Problem Statement:

! For the system dynamics:

! Find a control law:

! To maximize a performance index (minimize a cost 
function)
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Approaches:

" Dynamic optimization approaches:
! Calculus of variations approach.

! Euler-Lagrange equations.

! Dynamic programming.
! Hamilton-Jacobi-Bellman equation.
! Specialization to Adaptive critic designs.

" Static optimization approach:
! Parametric Optimization.
! Cost-to-go approach.



Direct Parametric Optimization Approach:
! Methodology:

Find the unknown coefficients,�G’ , that minimize the cost-to-go function

! Disadvantages:
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! This approach reduces to solving a static optimization problem which is 
highly nonlinear even for linear systems

! Easily gets stuck in spurious local minima even for the case of finding a 
linear optimal controller for a linear system

! Chance of finding a workable optimal controller using such an approach 
in practice is very limited.



Illustrative Example:
For a simple linear time invariant system,

and

we can write,

And so,

As seen the cost-to-go function expressed with a single parameter �G� , is a highly 
nonlinear function of the parameter and as seen from several test examples was found 
found to contain several minima.
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Modified Approach: 

! Reformulate the control law:

! Set up the cost-to-go function in terms of the �G�s�:
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�r� represents the order of 
approximation of the cost-to-go function



Modified Approach…
! Find the G�s by imposing the stationarity conditions:

and

! Solving the second set of equations is not as easy and even less
implementable in terms of a control architecture.

! x(k), the present state of the system appears as a coefficient in the 
stationarity conditions.

! By solving the stationarity conditions for multiple x(k)�s, presents 
enough equations for solving for the unknown G�s without solving the 
the second set of conditions.
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Illustrative Example:
For a simple linear time invariant system,

we can write,

And so,

As seen the cost-to-go function now expressed with the 
parameters �G�s� , is a quadratic function of the parameter and 
therefore has a single minimum
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Role of Neural Networks

! For a nonlinear system, the controller is typically nonlinear.
nonlinear.

! Cost-to-go function is a nonlinear function.
! Being universal function approximators, Neural Networks 

present themselves as ideal tools for handling nonlinear 
systems in the proposed Cost-to-go design approach

! Neural networks present a straightforward approach for 
making the design adaptive even in the case of a nonlinear 
system.



! Parameterize the cost-to-go function using a Neural Network (CGA
(CGA Neural Network)

! Inputs to the CGA Network:
x(k), u(k),�,u(k+r-1)

! Use the analytical model, or a computer simulation or the physical 
physical model to generate the future states. 

! Use the �r� control values and the �r� future states to get the ideal 
ideal cost-to-go function estimate.

! Use this to train the CGA Neural Network

Formulation of the Control Architecture: 
NN Cost-to-go function Approximator

∑∑∑∑
====

−−−−++++−−−−++++++++++++++++====
r

i

TT ikRuikuikQxikxkV
1

11
2
1 )]()()()([)(



CGA Neural Network Training

Actual System
or

Simulation Model

Neural Net 
Cost-to-go

Approximator

x(k)
u(k)

+−

V(k)

Vnn(k)

Verr

Neural Network Cost-to-go Approximator Training

u(k+1)
u(k+r-1)



Formulation of the Control Architecture: 
NN Controller

! Instead of a single controller structure (G), we need �r� 
controller structures.

! The outputs of the �r� controller structures, generate u(k) 
through u(k+r-1).

! Parameterize the �r� controller structures using an effective 
Neural Network.

x(k)
Neural

Network
Controller

u(k)

u(k+1)
…
u(k+r-1)



Neural Network Controller Training

! Gradient of V(k) with respect to the control inputs u(k) ,�, 
u(k+r-1) is calculated using back-propagation through the 
�CGA� Neural Network.

! These gradients can be further back-propagated through the 
Neural Network controller to get,                     through

! Neural Network controller is trained so that
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Advantages of the formulation
! The modified parametric optimization simplifies the 

optimization problem.
! CGA Network training and the controller Network training is 

is decoupled.
! Implementation is system independent. So the basic 

architecture remains the same for linear or nonlinear systems.
systems.

! Implementation is data-based. No explicit analytical model 
needed.

! Parameterization using Neural Networks makes the control 
architecture adaptive.

! Order of approximation �r� in the definition of V(k) serves as 
as a tuning parameter.



Implementation for Linear 
Systems:

" Motivation:
! Linear systems provide an easy way to see the 

details of the implementation of the cost-to-go 
go design.

! Provides a means for comparison of the results 
results with existing solutions.



Optimal Control of Aircraft Lateral Dynamics
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Airplane State Variables:

β - Side slip angle

p- Roll rate

r - Yaw rate

φ - Roll angle       

Airplane Input Variables:

δr - Rudder Deflection

δa - Aileron Deflection

Phoenix Hobbico 
Hobbistar 60tm model
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Evaluated
cost (�J�)
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Control gainOrder of approximation 
(�r�)

! Gain obtained using the new data-based approach:
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! Optimal controller gains calculated using LQR optimal  
solution with perfect knowledge of the system:

#Evaluated optimal cost = 10.0925



∆ ∆ ∆ - State trajectories using the cost-to-go design (r = 35)
***    - State trajectories using the cost-to-go design (r = 50) 

- State trajectories using LQR based optimal control
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Comparison of the state trajectories using the cost-to-go design and 
the LQR design
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∆ ∆ ∆ - Control trajectories using the cost-to-go design (r = 35)
***    - Control trajectories using the cost-to-go design (r = 50) 

- Control trajectories using LQR based optimal control

Comparison of the control trajectories using the cost-to-go design 
and the LQR design



Nonlinear Control of Aircraft in an 
approach configuration
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wind-axes system
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Nominal Flight Conditions
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Aircraft Parameters



Implementation Details
! Equations are written with a change of coordinates while maintaining 

the nonlinearity.

! ∆X and ∆h are transformed through a coordinate transformation,

so that now they represent perturbations along and perpendicular to 
the approach slope and we can now ignore the dynamics of the 
perturbation along the approach slope.
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Implementation Details…
! Equations of motion in terms of the nonlinear perturbation dynamics:

! Equations are discretized with a time step of 0.5 seconds.
! Specification of the cost function:
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Control Architecture
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(linear) 

Controller 
present and 

future outputs  
CGA hidden 
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(sigmoid) 

CGA output 
layer 

(linear) 
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X(k) 
V(k) 

Combined Neural Network having the CGA Network in front of the Controller 
Network. 

! Forming a combined Neural Network
! Fix the weights of the CGA part of the Network
! Training inputs to the network: Random values of x(k)
! Train the Network so that it gives the output value of zero for all 

the input random x(k)
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Subnet 1

Subnet 2
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With
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u(k)
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u(k+r-1)

u(k)
u(k+1)

u(k+r-1)

••••
••••
••••

••••
••••
••••

••••
••••
••••

A Control Architecture Proposed to Simplify the Neural Network 
Training Problem

CGA Network

Bringing Structure to the CGA Network



Implementation of the quadratic 
layer
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Advantages of the new structure:

! Guaranteed positive definiteness.
! Replaced training of a complex function by 

by the training of several simpler functions.
functions.

! A good quality control ability.
! Allow for hybrid architecture



u(k),…,
u(k+3)

Subnet 2

Subnet 3

Subnet 4

Subnet 5

Subnet 1

Subnet 3

Subnet 3

Subnet 4

Subnet 4

Subnet 5

Quadratic
Layerof
Neurons

x(k)

u(k)

u(k),…,u(k+4)
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u(k+5),…,u(k+9)
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u(k+3),…,
u(k+5)

u(k+4),…,
u(k+7)

u(k+5),…,
u(k+8)

∑∑∑∑
++++

++++====

++++
10

1

k

ki

TT RuuQxx )(

Implementation of the Hybrid CGA Network of order ‘r 
= 10’, using trained subnets of order 1 through 5



Internal Structure of the Neural Network Controller showing the 
separate Controller Subnets
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Neural Network Controller training using the trained CGA Network
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x(k)
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Combination Network with the controller 
Network before the Critic Network



Cumulative value of V(k) getting minimized with 
training of the Neural Network Controller Weights



. Aircraft response after an Initial perturbation with and 
without control

. ∇∇∇∇ -Open loop dynamics, ∗∗∗∗ - Response with the Optimal Nonlinear Neural Network Controller, ‘O’ – Response with the 
LQR
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Neural Network Controller Outputs



‘r’ ‘J’

5 410.8852

10 168.2999

15 93.6265

20 92.4814

25 88.5529

A comparison of the cost function, J, as a 
function of the order of approximation, ‘r’ of V(k)



Nonlinear Optimization- Global or Local



Conclusions:

! New Neural Network Control Architecture for 
optimal control.

! Applicable to both linear and nonlinear systems
! Data based.
! Systematic training procedure.
! Confirmation on a Nonlinear Aircraft Model.


